Publication number: 05-036425 Date of publication of application: 12.02.1993 Int.Cl. H01M 8/02 C25D 3/12 C25D 5/48 C25D 7/00 H01M 8/12 Application number: 03-038935 Applicant: TOKYO ELECTRIC POWER CO INC:THE Date of filing: 12.02.1991 10 Inventor: **UMEMURA FUMIO** ALLOY SEPARATOR FOR SOLID ELECTROLYTIC FUEL CELL AND MANUFACTURE OF THE SAME [Abstract] PURPOSE: To economically manufacture a separator having high electric conductivity and durability by forming a separator from a heat resisting alloy material, and providing predetermined plating layers by wet plating on required surfaces of the separator, respectively. CONSTITUTION: Separators 4, 4' are formed from heat resisting alloy material, and a Ni plating layer and a LaCrO3 plating layer are provided by wet plating on the respective surfaces opposite to a fuel electrode 1 and an air electrode 2 of the separators 4, 4'. These plating layers prevent the formation of oxidized films on the opposite surfaces to the respective 15 20 25 5 electrodes of the separators, and an alloy separator for solid electrolytic fuel battery economically enhanced in electric conductivity and durability is provided. # [Claims] [Claim 1] An alloy separator for solid electrolytic fuel cell with high electric conductivity, having a solid electrolyte, a fuel electrode, an air electrode, and a separator, comprising: 5 a separator consisted of a heat resisting alloy material; a nickel plating layer formed by a wet plating on the surface having fuel electrode of said separator; and a LaCrO₃ plating layer formed by wet plating on the surface having an air electrode. 10 [Claim 2] The alloy separator for solid electrolyte fuel cell of Claim 1, wherein the plating layers have a thickness between 3 and 30 µm. 15 [Claim 3] The method of preparing an alloy separator for solid electrolyte fuel cell with high electric conductivity, having a solid electrolyte, a fuel electrode, an air electrode, and a separator, comprising: > forming a separator by using a heat resisting alloy material; forming a Nickel plating layer by wet plating on the surface of said separator having a fuel electrode; and 20 25 forming a LaCrO₃ plating layer by oxidizing a LaCr-based plating layer that has been electro-deposited by wet plating on the surface of said separator having an air electrode. # ALLOY SEPARATOR FOR SOLID ELECTROLYTIC FUEL CELL AND MANUFACTURE OF THE SAME [Detailed Description] [Field of the Invention] The present invention relates to a solid electrolytic fuel cell, and more particularly to a method of preparing an alloy separator for solid electrolyte fuel cell with high electric conductivity. [Description of the Prior Art] Traditionally, a number of electrolyte fuel cell that uses the direct current energy obtain by a chemical reaction process between gas that can easily be oxidized, such as hydrogen, and gas that have oxidizing power, such as oxygen. An example of such is a solid electrolyte fuel cell (solid oxide fuel cell) that uses a solid electrolyte that exhibits ionic electric conduction. The above-mentioned cell has advantages of: not requiring a higher value metal catalyst such as platinum, having a high efficiency of energy transition, and a low quality fuel such as a coal gas can be used. Moreover, since the cell only in a solid form, no problems arise when treating a liquid electrolyte such as a phosphate electrolyte fuel cell or a melting carbonate fuel cell. Another advantage is that the waste heat of the high reaction temperature of the cell ranging from 800 to 1000 °C can be used. 20 25 5 10 15 The above-mentioned solid electrolytic fuel cell can be in a plane or a cylinder shape. For example, as the structure of a single plane-shaped solid electrolytic fuel cell shown in Figure 1, a solid electrolyte (e.g. ZrO₂) plate 3 was inserted between a pair of fuel electrodes 1 and an air electrode 2. Then, they were inserted into separators 4 and 4' that have numerous pairs of long grooves. Such single cells are connected in a series to become a stack, which can provide a practical electric power supply. Moreover, each unit of the fuel cells is separated by the separator 4, which has a function of providing an electrical connection between the fuel cells connected in a series and a function of supplying a pathway for reactant gases (fuel gas and air). In general, the electrolyte plate 3 is a sintered body, such as a stabilized oxide zirconium; the fuel electrode (anode) 1 is formed of a sintered body of porous nickel; and the air electrode (cathode) 2 is consisted mainly of sintered body of perovskite oxide. Hydrogen is introduced between the fuel electrode 1 and the separator 4 and oxygen and air are introduced between the air electrode 2 and the separator 4', thereby producing electromotive force by the reactions as follows. 15 Air electrode (reaction on the surface of the electrolyte): $$O_2 + 4e \rightarrow 20 - 2$$ 5 10 Fuel electrode (reaction on the surface of the electrolyte): $$2H_2 + 2O - 2 \rightarrow 2H_2O + 4e$$ The separators 4 and 4' is ordinarily formed of ceramic heat resisting alloy and are provided in an orthogonal structure. The opposite plates of the separators 4 and 4' are consisted of multiple long grooves that act as an air or a fuel pathway, to which air or fuel is supplied. As a material for the separators 4 and 4', LaCrO₃-based ceramic, such as LaCrO₃, Mg-added LaCrO₃, Sr-added LacRO₃, or heat resisting alloy, such as Fe-Cr based, Fe- Cr-Ni based, Ni-Cr based, Ni-Cr-Mo based, Fe-Al based, and Fe-Cr-Al based materials are now in trials to be used. ## [Object of the Invention] 5 20 As described above, the separator needs to achieve an enhanced function of electrical connection between the cells and form a pathway for the passage of fuel and air from the electrode plates. Thus, not only a good electric conductivity is necessary, but also, keeping air separate from fuel gas is necessary. However, because the above-mentioned heat resisting 10 alloy separator is used at a high temperature surrounding 1000 °C, an oxide film (Cr₂O₃, Al₂O₃, SiO₂, etc.) that have the oxides that are based on parent metals (iron or nickel, etc.) and alloy elements as the main structure are both formed. As a result, the electrical conductivity is decreased, and the electrical connection between the electric cells is damaged. Moreover, 15 due to the formation of a thick film at the side of the air electrode, the cell (air electrode/electrolyte/fuel electrode) is destroyed. Therefore, in order to hinder the formation of the films and to prevent the decrease in the electric conductivity, LaCrO₃ based, LaMnO₃ based and LaCoO₃ based materials were coated using the metal spraying or the slurry coating methods. However, since a fine film could not be easily achieved by using those methods, oxidation of the separator could not be prevented. 25 [Means to Solve the Problem] In order to prevent the decrease in the electric conductivity, the inventors of the present invention found that the oxidation of a separator could be prevented by using a wet plating method of any type of metal or metal oxides, and furthermore, that the method also prevents the decrease in electric conductivity. In other words, the present invention provides an alloy separator for solid electrolytic fuel cell having a fuel electrode, an air electrode, and a separator, wherein the separators 4 and 4' are consisted of heat resisting alloy, the fuel electrode 1 of the separator has a nickel plating layer 4a, and the air electrode 2 has a LaCrO₃ plating layer 4b by applying a wet plating method. Additionally a method to prepare an alloy separator for solid electrolytic fuel cell having a solid electrolyte, a fuel electrode, an air electrode, and a separator, characterized in making the separator using heat resisting alloy. forming a nickel plating layer on the fuel electrode side of said separator, and forming a LaCrO₃ plating layer by oxidizing LaCr-based plating layer, which is electro-deposited using a wet plating method, on the air electrode side of said separator. 5 10 15 20 25 According to the present invention, the thickness of the plating layers is preferably 3 to 30 μ m and a nickel plating is formed on the fuel electrode using the wet plating method. Moreover, a LaCrO₃ plating layer on the air electrode is formed by plating LaCr followed by an oxidation treatment under a real operating condition. If the plating layer is less than 3 μ m thick, the prevention of the oxidation is less effective. Furthermore, if the plating layer is more than 30 μ m thick, the resistance is enhanced. Therefore, the electrical connection function is prevented enough at a thickness between 3 to 30 µm. 5 10 15 20 25 Moreover, a good result could also be achieved by using cobalt plating instead of the nickel plating. For LaCrO₃, it is preferable to use, other than LaCrO₃, La_{0.9}Mg_{0.1} CrO₃, La_{0.9}Sr_{0.1} CrO₃. Furthermore, the same wet plating method can be used. The sectional structure of the separator can be in the form of one body that has long grooves on both of the fuel electrode side and the air electrode side, an example of which is shown in Figure 2 (A); a three part-type structure having a fuel electrode part, an air electrode part and a heat resisting alloy sandwiched therebetween as shown in Figure 2 (B); and a two part-type structure having a fuel electrode plate and an air electrode plate as shown in Figure 2 (C). In addition, in the figure, 4a is the nickel plating layer and 4b is LaCrO₃ plating layer. [Example] The following is an example of the present invention described in detail. Ni-Cr-Mo alloy, nickel layer for the fuel electrode, and LaCrO₃ layer for the air electrode were used for an alloy separator. For the nickel layer, nickel sulfate (NiSO₄ • 6 H₂O) bath at 2 to 10 A/dm² current density and 20 to 30 µm thickness was used to be electro-deposited. For LaCrO₃ layer, [(NH₄) ₂ Cr₂O₇ + La(NO₃)₃] bath was used to electro-deposit at an electrical potential (-2.0 V to -1.5 V c sSCE), followed by forming a film having several µm per 1 La/Cr molar ratio and undergoing oxidation between 700 °C to 1000 °C under air. 10 15 20 Figure 3 shows the changes in the generating capacity over a period of time when the alloy separator thusly obtained was used for a solid electrolytic fuel cell. In addition, the same figure also shows the results when an alloy separator without the plating layer. As shown in the figure, comparing with the alloy separator without the plating layer, the magnitude of the decrease in capacity of the plated alloy separators was much less after a long period of operation. When the alloy separators were observed after the operation, the alloy separator that were plated was seldom changed, while the one without the plating layer showed thick oxide film formed on it. The little degradation of the function of the plated alloy separator was due to a small amount of increase in electric resistance caused by controlled formation of oxide films. [Effect of the Invention] As explained above, the alloy separator of the present invention prevents the decrease in the electrical connection function at a low cost, and provides a solid electrolytic fuel cell that contains such separator, thereby providing an advantageous electric cell whose capacity does not decrease over a continuous use. [Brief Description of the Drawing] 25 [Fig. 1] A perspective exploded illustration of a solid electrolytic fuel cell. [Fig. 2] A structural sectional view of each type of the separators for a plane-shaped solid electrolytic fuel cell according to the example. [Fig. 3] A graph showing the changes in the generating capacity over a period of time when the alloy separator with and without plating were used for a solid electrolytic fuel cell. [Explanation of the References] 1: Fuel Electrode, 2: Air Electrode, 3: Solid Electrolyte Plate, 4, 4': Separator, 4a: Nickel Plating Layer, 4b: LaCrO₃ Plating Layer 5 ## (19)日本国特許庁 (JP) # (12) 公開特許公報(A) (11)特許出願公開番号 # 特開平5-36425 (43)公開日 平成5年(1993)2月12日 | (51) Int.Cl. ⁵ | | 識別記号 | 庁内整理番号 | FΙ | 技術表示箇所 | |---------------------------|------|--------------|---------|----------|------------------------------------| | H 0 1 M | 8/02 | В | 9062-4K | | | | C 2 5 D | 3/12 | | 8414-4K | | | | | 5/48 | | 6919-4K | | | | | 7/00 | G | 6919-4K | | | | H01M | 8/12 | | 9062-4K | | | | | | | • | 1 | 審査請求 未請求 請求項の数3(全 4 頁 | | (21)出顯番号 | | 特額平3-38935 | | (71)出願人 | 000003687
東京電力株式会社 | | (22)出願日 | | 平成3年(1991)2月 |] 12日 | | 東京都千代田区内幸町1丁目1番3号 | | | | | | (72)発明者 | 梅村 文夫 | | | | | | | 東京都調布市西つつじケ丘二丁目4番1号 東京電力株式会社技術研究所内 | | | | | | (74)代理人 | 弁理士 村田 幸雄 | | | | | | | | (54) 【発明の名称】 固体電解質型燃料電池用合金セパレータ及びその製造 方法 ### (57)【要約】 【目的】本発明は、電気伝導性及び耐久性の優れた固体 電解質型燃料電池用合金セパレータを低コストで供給す る。 【構成】固体電解質と燃料極と空気極と、そしてセパレータとを備えてなる固体電解質型燃料電池に使用される合金セパレータにおいて、セパレータを耐熱合金で構成し、かつ該セパレータの燃料極面側にはNiメッキ層を、また空気極面側にはLaCrO。層を湿式メッキ法を用いて設ける。 1 #### 【特許請求の範囲】 【請求項1】 固体電解質と燃料極と空気極と、そして セパレータとを備えてなる固体電解質型燃料電池のセパ レータにおいて、セパレータを耐熱合金で構成し、かつ 該セパレータの燃料極面側にはニッケルメッキ層を、ま た空気極面側にはLaCrOa系メッキ層を湿式メッキ 処理で設けてなることを特徴とする固体電解質型燃料電 油用合金セパレータ。 【請求項2】 メッキ層の厚さが3~30μmであるこ とを特徴とする請求項1記載の固体電解質型燃料電池用 10 空気極(電解質界面での反応): O₂ + 4 e → 2 O - 2 合金セパレータ。 【請求項3】 固体電解質と燃料極と空気極と、そして セパレータとを備えてなる固体電解質型燃料電池のセパ レータの製造方法において、セパレータを耐熱合金で構 成し、かつ該セパレータの燃料極面側に湿式メッキ法で ニッケルメッキ層を設け、また空気極面側には湿式法で 電析させたLaCr系メッキ層を酸化処理してLaCr O₃ 系メッキ層を設けてセパレータを製造することを特 徴とする固体電解質型燃料電池用合金セパレータの製造 方法。 #### 【発明の詳細な説明】 [0001] 【産業上の利用分野】本発明は固体電解質型燃料電池、 特に改善された固体電解質型燃料電池用合金セパレータ 及びその製造方法に関する。 [0002] 【従来の技術】従来より、水素のように酸化され易いガ スと、酸素のように酸化力のあるガスとを電気化学的反 応プロセスを経て反応させることにより、直流電力を得 るようにした各種燃料電池が開発されており、そのうち の一つにイオン性電気伝導を示す固体電解質を用いる固 体電解質型燃料電池 (Solid Oxide Fue 1 Cell) がある。該電池は、白金等の高価な貴金 属触媒を必要とせず、エネルギー変換効率が高く、石炭 化ガス等の低質燃料も使用できるなどの有利性がある。 また、該電池は固体のみで構成されているため、他のリ ン酸電解質型燃料電池や熔融炭酸塩型燃料電池のように 液体電解質を扱う不利点がなく、かつ800~1000 ℃の高い作動温度であるためこの廃熱を利用できるなど の利点がある。 【0003】該固体電解質型燃料電池には、平板型や円 筒型のものがあり、例えば平板型の固体電解質型燃料電 池の構成は、その単電池が図1に示すごとく、固体電解 質(例えば2 r O2) 板3を一対の燃料極1と空気極2 で挟持し、更にこれらを一対の多数の長溝付きセパレー タ4、4'で挟持してなり、そしてこれら単電池は直列 に接続されて集合電池とされ、実用的な電力の供給を可 能化する。 そしてこれら各単位電池は、単位電池間で 上記直列接続のための電気的な接続機能と各電極板への 反応ガス(燃料ガス及び空気)の供給通路を形成する機 50 かつ電気的な接続機能の低下も阻止できることを見いだ 能とを兼ね備えた導電性のセパレータ4を介して積層さ れている。 【0004】一般に、電解質板3は電解質の安定化ジル コニア等の焼結体であり、燃料極(アノード)1はニツ ケル多孔質焼結体よりなり、空気極(カソード)2はペ ロプスカイト酸化物焼結体を主体とするものであって、 燃料極1とセパレータ4との間に燃料である水素が導入 され、また空気極2とセパレータ4'との間に酸素、空 気等が導入され、下記反応により、起電力が生成する。 燃料極(電解質界面での反応):2H2+2O-2→ 2H₂ O+4e 【0005】セパレータ4、4'は通常、セラミックあ るいは耐熱合金で構成され、互いに直交して設けられ、 該セパレータ4、4'の対向面には多数の長溝からなる 燃料又は空気の通路が形成され、それらに燃料又は空気 が分流供給される。セパレータ4、4'の材質として は、LaCrO3、Mg添加LaCrO3、Sr添加La CrOs等のLaCrOs系セラミックあるいは例えば、 20 Fe-Cr系、Fe-Cr-Ni系、Ni-Cr系、N i-Cr-Mo系、Fe-Al系、Fe-Cr-Al系 等の耐熱合金の使用が試みられている。 [0006] 【発明が解決しようとする課題】上記セパレータは、前 述のごとく単位電池間で電気的な接続機能と各電極板へ の燃料及び空気の供給通路を形成する機能を備える必要 から、良電気電導性が要求され、また空気と燃料ガスと の混合を阻止することが要求されている。しかしなが ら、前記耐熱合金セパレータは、1000℃付近の高温 で使用されるため、空気極側では母金属(鉄、ニッケル 等) を主体とする酸化物と共に合金元素を主体とする酸 化物膜(Cr₂O₃、Al₂O₃、SiO₂等)の両方が 形成される。また燃料側には合金元素を主体とする酸化 物(Cr₂O₃、Al₂O₃、SiO₂等)の膜が形成さ れる。その結果電気電導性が低下し、単位電池間の電気 的な接続機能が損なわれてしまう。また、空気極側では 厚い皮膜が形成されるためにセル(空気極/電解質/燃 料極)を破壊してしまう。 【0007】そこで、これら膜の形成を阻止して電気電 40 導性の低下を回避するため、溶射法やスラリーコーティ ング法等により、LaCrOa系、LaMnOa系、La CoOa系のコーティングを施すことが検討されたが、 これらの方法では緻密な膜の形成が困難であり、セパレ ータの酸化防止にはあまり役立たなかった。 [0008] 【課題を解決するための手段】本発明者は上記セパレー 夕の電気的な接続機能の低下を阻止すべく、研究の結 果、セパレータにある種の金属又は金属酸化物を湿式メ ッキすることにより、セパレータの酸化防止に役立ち、 10 3 した。すなわち本発明は、固体電解質と燃料極と空気極 と、そしてセパレータからなる固体電解質型燃料電池の セパレータにおいて、セパレータ4,4'を耐熱合金で 構成し、かつ該セパレータの燃料極1面側にはニッケル メッキ層4aを、また空気極2面側にはLaCrOs系 メッキ層4bを湿式法を適用することにより設けてなる ことを特徴とする固体電解質型燃料電池用合金セパレー タ、及び固体電解質と燃料極と空気極と、そしてセパレ ータとを備えてなる固体電解質型燃料電池のセパレータ の製造方法において、セパレータを耐熱合金で構成し、 かつ該セパレータの燃料極面側に湿式メッキ法でニッケ ルメッキ層を設け、また空気極面側には湿式法で電析さ せたLaCr系メッキ層を酸化処理してLaCrO₃系 メッキ層を設けてセパレータを製造することを特徴とす る固体電解質型燃料電池用合金セパレータの製造方法で ある。 【0009】本発明において、耐熱合金としては、Fe -Cr系、Fe-Cr-Ni系、Ni-Cr系、Ni-Cr-Mo系、Fe-Al系又はFe-Cr-Al系等 ッキ層4aを施した理由は、耐熱合金元素が酸化され、 Cr₂O₃やAl₂O₃等の高抵抗皮膜が形成されないよ うにするためであり、また空気極2面側にLaCrOs 層4bを形成させた理由は、LaCr₂O₃は電気伝導 性が良好で、かつ耐酸化性にも優れ、Cr2 OaやA1 2 O₃等の高抵抗皮膜の形成を防止するからである。 【0010】上記本発明において、メッキ層の厚さは3 ~30 µmが好ましく、そのメッキ法は湿式電気メッキ 法により燃料極側にはニッケルメッキを形成する。また 空気極側のLaCrO3層はLaCrメッキを施した後 30 に実運転酸化処理を行うことにより形成することができ る。メッキ層の厚さが3μmより薄いと、酸化防止の効 果が薄く、また30μmを越えると電気抵抗が増大する ことになる。よって厚さは3~30 µmで、重気的な接 続機能の低下を充分に阻止することができる。 【0011】なお、上記ニッケルメッキの代わりにコバ ルトメッキを施しても良結果が得られる。LaCrOa 系としては、LaCrOsのほか、Lao. 9 Mgo. 1 CrOs、Lao. 9 Sro. 1 CrOs等が好まし く、同様に温式メッキ法で形成できる。 【0012】セパレータの断面構造としては、例えば図 2の(A)に示すごとき、燃料極面側と空気極面側の各 長溝を表裏に設けてなる一体型、また図2の(B)に図 示するごとき、燃料極側部材と空気極側部材の中間に耐 熱合金をサンドウィッチに挟持した3分割型、さらに図 2 (C) に示す燃料極面側薄板と、空気極面側薄板とで 構成する2分割型等が挙げられる。なお、図中4aはN iメッキ層、4bはLaCrOsメッキ層を表す。 [0013] 【実施例】以下に本発明を実施例によって詳細に説明す る。合金セパレータとして、Ni-Cr-Mo合金を使 用し、燃料極側の面にNi層を、空気極側の面にLaC rOs層を被覆した。Ni層は、硫酸ニッケル(NiS O₄・6 H₂ O) 浴を用い、2~10 A/dm² の電流 密度で、厚さ20~30μmに電析させた。LaCrO 3層は [(NH4) 2 C r 2 O 7 + L a (NO3) 3] 浴を 用い、定電位 (-2. 0V~-1. 5VvsSCE) 電 析で、La/Crモル比1の数μmの厚さの皮膜を形成 した後、700℃~1000℃の空気中酸化処理でLa CrOa層にした。 【0014】こうして得られた合金セパレータを固体電 解質型燃料電池に使用したときの出力特性の経時変化を 図3に示した。また同図にはメッキ層を設けていない合 金セパレータを使用したときの出力特性の経時変化も示 した。同図からみて、メッキを施していない合金セパレ ータを使用した場合に比較して、本実施例のメッキ処理 が挙げられる。メッキ層として、燃料板1面側にNiメ 20 をした合金セパレータの場合のほうが、長時間運転によ る性能低下の程度が少ないことが解る。運転後の合金セ パレータを観察すると、実施例のメッキ処理したセパレ ータはあまり変化していないが、無処理のものには厚い 酸化皮膜が形成されていた。実施例のメッキ処理材の性 能低下が少ない理由は、酸化膜の形成が抑制され、電気 抵抗の増加が少なかったためである。 [0015] 【発明の効果】上述のとおり、本発明の合金セパレータ は低コストで電気的な接続機能の低下のないものであ り、該セパレータを有する固体電解質型燃料電池は連続 使用による性能低下のない優れものとなる。 【図面の簡単な説明】 【図1】固体電解質型燃料電池の単電池の分解斜視説明 図。 【図2】本発明実施例の平板型固体電解質型燃料電池の 各種セパレータの断面構造図。 【図3】実施例の合金セパレータ及びメッキ処理を施し ていない合金セパレータを固体電解質型燃料電池に使用 したときの出力特性の経時変化を示すグラフ図。 【符号の説明】 1:燃料極, 2:空気極, 3:固体電解質板, 4、4':セパレータ、 4 a:Niメッキ層, 4b:LaCrO₃メッキ層